Automatic and Efficient Long Term Arm and Hand Tracking for Continuous Sign Language TV Broadcasts
نویسندگان
چکیده
We present a fully automatic arm and hand tracker that detects joint positions over continuous sign language video sequences of more than an hour in length. Our framework replicates the state-of-the-art long term tracker by Buehler et al. (IJCV 2011), but does not require the manual annotation and, after automatic initialisation, performs tracking in real-time. We cast the problem as a generic frame-by-frame random forest regressor without a strong spatial model. Our contributions are (i) a co-segmentation algorithm that automatically separates the signer from any signed TV broadcast using a generative layered model; (ii) a method of predicting joint positions given only the segmentation and a colour model using a random forest regressor; and (iii) demonstrating that the random forest can be trained from an existing semi-automatic, but computationally expensive, tracker. The method is applied to signing footage with changing background, challenging imaging conditions, and for different signers. We achieve superior joint localisation results to those obtained using the method of Buehler et al.
منابع مشابه
Long Term Arm and Hand Tracking for Continuous Sign Language TV Broadcasts
The goal of this work is to detect hand and arm positions over continuous sign language video sequences of more than one hour in length. We cast the problem as inference in a generative model of the image. Under this model, limb detection is expensive due to the very large number of possible configurations each part can assume. We make the following contributions to reduce this cost: (i) using ...
متن کاملEmploying signed TV broadcasts for automated learning of British Sign Language
We present several contributions towards automatic recognition of BSL signs from continuous signing video sequences: (i) automatic detection and tracking of the hands using a generative model of the image; (ii) automatic learning of signs from TV broadcasts of single signers, using only the supervisory information available from subtitles; (iii) discriminative signer-independent sign recognitio...
متن کاملAutomatic learning of British Sign Language from signed TV broadcasts
In this work, we will present several contributions towards automatic recognition of BSL signs from continuous signing video sequences. Specifically, we will address three main points: (i) automatic detection and tracking of the hands using a generative model of the image; (ii) automatic learning of signs from TV broadcasts using the supervisory information available from subtitles; and (iii) g...
متن کاملApplying mean shift and motion detection approaches to hand tracking in sign language
Hand gesture recognition is very important to communicate in sign language. In this paper, an effective object tracking and hand gesture recognition method is proposed. This method is combination of two well-known approaches, the mean shift and the motion detection algorithm. The mean shift algorithm can track objects based on the color, then when hand passes the face occlusion happens. Several...
متن کاملAppearance-Based Features for Automatic Continuous Sign Language Recognition
This diploma thesis investigates appearance-based features for the person-independent vision-based recognition of continuous sign language. A large variety of methods which have been successfully used for automatic speech recognition is applied to this task. Appearance-based approaches do not rely on a segmentation of the images or on predefined models of the image content and use the image its...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012